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Mean-field cluster dynamics (CD) using rate theory is a convenient method to simulate the nucleation, growth,
and coarsening of clusters under continuous irradiation or ion implantation up to high doses. When displacement
cascades are produced, clusters are directly nucleated in cascades, so that creation rates of clusters must be
introduced in CD. However, these rates are difficult to determine since CD cannot intrinsically account for spatial
correlations between clusters in cascades. In this article a space homogenization method is proposed to determine
an effective irradiation source term for CD, based on the knowledge of the primary damage and on a modified
kinetic Monte Carlo algorithm. The effective irradiation term is shown to be dynamic, in the sense that it depends
on the cluster density in CD simulations. The interest of the method is demonstrated in iron in the case of 20-keV
primary knock-on atoms and 60-keV helium implantation.
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I. INTRODUCTION

Irradiation of materials with ions and neutrons, as well as
ion implantation, lead to displacement cascades, which are
locally damaged regions where point defects [vacancies and
self-interstitials atoms (SIAs)] and point-defect clusters are
generated. The formation of such localized damage, with a
significant fraction of defects produced in clusters, highly
affects the long-term microstructural evolution and has a
direct influence on the macroscopic properties of materials. In
general, two steps can be identified in the formation of defect
clusters in cascades.1 First, clusters can be created during the
initial development of the cascade, in either the ballistic phase
or the thermal spike.2,3 This phase, which lasts a few tenths
of a picosecond over a few tens or hundreds of nanometers,
can be modeled by molecular dynamics (MD) simulations
or by its binary collision approximation (BCA). Second,
migrating species inside the cascade region can interact with
other clusters in the same cascade or leave the cascade
region and interact with other elements of the microstructure,
such as debris from other cascades, dislocations, and grain
boundaries.4 This second step, which is linked to the long-
range diffusion of defects, spans length scales from a few
nanometers to a few microns, typical of a grain size, and time
scales from nanoseconds to years.

To simulate such large systems over long times, object
kinetic Monte Carlo (OKMC)4,5 or event-based kinetic Monte
Carlo (EKMC)6,7 methods are often used. In this type of
approach, referred to hereafter as the kinetic Monte Carlo
(KMC), each cluster is considered as a single object that can
migrate, absorb, and emit other species. Since the position of
objects is considered, this method naturally accounts for spatial
correlations between clusters within cascades. However, a
major limitation of KMC is the difficulty to reach irradiation
doses higher than about 0.1 displacement per atom (dpa), due
to the computational burden of such calculations.

To circumvent this problem, mean-field rate theory, also
called cluster dynamics (CD), has to be used.8 This approach
is similar to KMC, insofar as the migration, reaction, and
dissociation of clusters are considered. However, only cluster

concentrations are retained, so that a set of ordinary differential
equations is solved to determine the concentrations as a
function of time. In such reaction rate equations, irradiation is
introduced as a creation rate term for some cluster types. CD is
of common use in metals under various irradiation conditions
(e.g., Refs. 8 and 9) and is also used in semiconductors after
ion implantation.10,11

KMC and CD simulations can be compared at any physical
time on the basis of cluster distributions. Without irradiation,
it has been shown that a very good agreement is obtained for
the homogeneous precipitation under thermal aging12 and the
annealing of self-defects.13 Under irradiation, the agreement
is also very good provided that spatial correlations between
defects created in KMC are artificially suppressed.14,15 When
spatial correlations are considered in KMC, which is the case
when cascades provided by MD or BCA calculations are
directly introduced in the simulation, severe discrepancies
generally exist between CD and KMC results.15–17 Such
differences arise because CD, due to its mean-field formalism,
can only consider the creation of defects without spatial
correlations. To circumvent this difficulty it is customary to
consider the creation rates of clusters in CD as parameters
which are fitted to reproduce cluster distributions obtained by
KMC or experimental measurements.9 This approach raises
the question of the predictability of CD calculations, given the
large influence of creation rates on the nucleation of clusters
and the number of possible fitting parameters: one has to
choose the type of clusters which are created under irradiation
and the associated creation rate.

Attempts to design an accurate source term for CD are
based on the annealing of isolated cascades with KMC for
a sufficient time, in order to suppress spatial correlations.
Concentrations of remaining defects at the end of annealing
can then be used to build an effective source term. This
method, however, raises the fundamental question of the choice
of the annealing time. For example, in α-iron first-principle
calculations have shown that SIA migration energy is 0.34 eV,
whereas vacancy migration occurs with a migration energy
equal to 0.67 eV.18 Assuming as a first approximation the same
diffusion prefactor for these two defects, at room temperature
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the ratio of diffusion coefficients is around 3.105. As already
pointed out in Refs 19 and 20, SIAs will therefore homogenize
more quickly than vacancies. Such differences in diffusion
coefficients are very common, so this problem appears in a
large number of metals, semiconductors and insulators. To our
knowledge, a parameter-free and physically motivated method
to build a source term for CD is still lacking.

In the present paper we propose a simple yet powerful
method to address with CD the multitime and multiscale
process corresponding to the migration and clustering of
defects within and between cascade regions. We show that,
in general, no annealing time can be defined in the KMC
to provide a correct source term for CD, but an easy-to-
implement modification can be made in KMC to build a space
homogenization procedure. This procedure provides a source
term for CD which correctly reproduces cluster distributions
obtained in KMC simulations. Effectiveness and accuracy of
the method are shown for 20-keV cascades in α-iron and
helium implantation at 60-keV in α iron. The first example is a
test of the method for rather large cascades or subcascades,
whereas the second example shows a case of a spatially
dependent source term representative of light ion implantation.

II. SIMULATION METHODOLOGY

As explained above, to simulate the evolution of clusters
under cascade production conditions, at least two methods
must be coupled. The first one provides primary damage in
terms of the position of defects inside a cascade and is used to
build a cascade database. The second is a kinetic simulation
to calculate the evolution of clusters due to their migration,
reaction with other clusters, and dissociation.

Our goal is to build a correct source term for CD kinetic
simulations. We therefore need a reference kinetic simulation
to check the CD simulations. This reference is provided by
a complete KMC run in which cascades are introduced one
after the other and evolved over long times. Note that such
a brute force approach requires very large computation times
and can only be used to produce reference results for selected
test cases.

The results of the full KMC simulations will be compared
with mean-field CD with various source terms. Three types of
source terms will be considered, resulting from raw cascades
(no annealing), standard constant-time annealing within the
KMC of single cascades, and our sphere homogenization
procedure. In Sec. II A we briefly describe the tools we have
used for primary damage, KMC, and CD simulations. In
Sec. II B, we describe our sphere homogenization procedure
and the associated modifications of KMC simulations.

A. Simulation techniques

Correlated primary damage was produced by the MARLOWE

code.21 Though less precise than MD simulations, this code
enables one to quickly simulate primary damage and have
access to the spatial distribution of defects in cascades, which
is needed for KMC simulations. Contrary to MD, only point
defects are created during cascade development, so clusters
will result from the defect migration treated in KMC and
CD. Since we are only interested in designing a source term

that would allow us to reproduce KMC results with CD,
using another simulation technique to provide primary damage
would not affect the validity of our homogenization method.

KMC simulations were performed using the EKMC code
JERK.6,7 Contrary to object kinetic Monte Carlo (OKMC)
methods,4,5 atomic jumps of clusters are not considered:
instead clusters migrate through continuous diffusion laws.
The total simulation time is divided into macro time steps,
during which creation, absorption, and dissociation of clusters
are performed. At the end of each time step, defects are moved
according to their respective diffusion law. Details about the
original implementation are provided in Ref. 7. In this work
we used an improved version of JERK, which generally leads
to considerable speedups without sacrificing precision. The
simulation volume is divided into rectangular cells which
contain at most a given fixed number of defects. As in the cell
method,22 the interaction list of a defect in a given cell during
a macro time step is built by considering all defects in the
cell and in neighbor cells, thereby avoiding a full calculation
over all defect pairs. The value of the macro time step is
chosen so that the mean-square displacement of the fastest
defect present in the simulation volume is lower than the
smallest cell dimension, so that interactions beyond neighbor
cells can be safely neglected. This adaptive time-step scheme
has profound implications on the efficiency of the annealing
procedure presented in the next subsection.

Finally, CD simulations were done using the CRESCENDO

code.13 It relies on the same input parameters as KMC:
diffusion coefficients of objects, binding energies, and reaction
distances between interacting objects. Clusters are identified
by their number of vacancies or SIAs n and, if needed,
their number of solute or gas atoms p. Evolution equations
concerning cluster concentrations C(n,p) are presented in
Ref. 13. CRESCENDO, as regular CD codes, deals with fully
homogenized concentrations. It can also consider a spatial
dependence of the equations: the system under study can be
divided into slices in one direction and a homogeneous CD
is performed in each slice. Slices are coupled to adjacent
slices through a Fick’s law on mobile species. This version
of the code will be used to simulate the highly inhomogeneous
damage profile induced by helium implantation.

B. Sphere homogenization method

For the sake of simplicity, we explain in the following
how to define an effective source term for homogeneous CD,
based on cascades generated by BCA or MD. We call this
procedure the sphere homogenization method (SHM). Spatial
dependence is treated at the end of this section. We use the
term “cluster” for both single defects and defect clusters.

First, Nc cascades are generated to be used as a cascade
database. These cascades are then homogenized one by one
and a histogram of cluster types is built during this process.
To homogenize a cascade, we use a modified KMC code.
The KMC being stochastic in nature, for each cascade many
different evolutions are possible. We therefore perform Nr

KMC runs to sample the various possible evolutions of
every cascade. During each run the following steps are
performed.

(1) At t = 0, insert the cascade in a KMC simulation box.
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FIG. 1. (Color online) Schematic representation of a typical
kinetic evolution in a homogenization simulation by SHKMC. In
this example, damage is created by the implantation of a helium atom
from the left of the system. The contribution to the effective CD source
term is shown at the right for homogeneous CD simulations. When
spatial dependency of rate equations is considered, the source term is
defined for each slice and is shown here below the braces. Vacancies,
SIA clusters containing n SIA, and helium atoms are symbolized by
V, In, and He, respectively.

(2) Draw spheres centered on the initial position of clusters
in the cascade. Each sphere has the same radius rd, whatever
the cluster type.

(3) Proceed to the kinetic evolution of the system with
KMC. Once a cluster crosses its sphere, it is suppressed from
the simulation box and a contribution of this cluster to the
histogram of cluster types is added. If a new cluster is created,
a sphere centered on the position of this cluster is drawn. We
call this modified version of KMC the sphere homogenization
KMC (SHKMC) (Fig. 1).

(4) At t = th (final homogenization time), stop the simula-
tion and add the remaining clusters to the histogram of cluster
types. Suppress the content of the simulation box and go to
step 1.

Once all cascades have been homogenized, the histogram of
cluster types is transformed into creation rates of clusters and
used as an effective source term in CD. The method is based on
two parameters, the sphere radius rd and the homogenization
time th. These parameters are not fitted on experiments or KMC
results but are determined as follows. In CD, since clusters are
homogeneously distributed in space, at any time in a simulation
the volume ascribed to a cluster is

Vc = 1∑
n,p C(n,p)

, (1)

where the sum runs over all possible cluster types. The
half-distance between first neighbors, assuming a simple cubic
arrangement of clusters, is therefore

rc = 1

2

(
1∑

n,p C(n,p)

)1/3

. (2)

The sphere radius rd must be chosen equal to rc, which
appears to be a typical homogenization distance. If rd is chosen
larger than rc, our modeling setup for homogenization, which
consists in a single isolated cascade in the simulation box,
is not valid anymore in general. Indeed, if a cluster from
the cascade is allowed to migrate over distances larger than
rc during the homogenization process, the probability that a
reaction occurs between this cluster and a cluster which is
not part of the cascade cannot be neglected. As we do not
consider such intercascade clustering in the homogenization

procedure, for rd > rc intracascade clustering is artificially
enhanced. Conversely, if rd is much lower than rc, clusters are
not allowed to migrate over intermediate distances, which are
still lower than the typical distance between clusters in CD, so
the homogenization is not complete.

Since the total density of clusters is not constant as a
function of time, rc varies during a CD simulation. Therefore,
at any time step in the CD simulation, the source term must be
updated with the result of a homogenization performed with
rd = rc. In practice, to determine this dynamic source term,
several KMC homogenizations of the cascade database must
be performed before a CD simulation with different values
of rd which encompass the values of rc needed in CD. The
precise source term required by CD for any value of rc can
then be determined by interpolating the effective source terms
obtained by homogenization for several values of rd. We show
in the next section that using a constant rd can lead to significant
deviations from a reference calculation when the variation of
the cluster density is large.

The value of the homogenization time th is less constrained
than rd. Increasing the homogenization time leads to a better
homogenization of slow clusters, while fast clusters are quickly
removed from the SHKMC simulation once they touch their
sphere, so in general, th should be large enough to enable all
clusters to homogenize.

For a spatially dependent CD source term, when a cluster
leaves the SHKMC simulation (steps 3 and 4), it is placed at
its original position, as determined by the center of its sphere,
instead of its final position. Indeed, since the initial and final
positions can be in different slices, using the final position
would introduce an undesired long-range diffusion effect in the
source term. This would overestimate the diffusion of clusters
between slices, as it would be partly accounted for in SHKMC
simulations and, again, in CD simulations. Another thing to
note in spatially dependent CD simulations is that rd must
remain lower than the slice width. In practice, except for the
very first simulation stages, i.e., for a very low concentration
of clusters, this condition is always respected.

In the next sections we show the effectiveness and accuracy
of the sphere homogenization procedure coupled with CD
simulations in two cases.

III. 20-KEV CASCADES IN α-IRON

In α-iron, it can be considered that for primary knock-on
atoms (PKAs) whose energy is higher than around 20 keV,23

cascades are split into subcascades. We can thus expect that
20-keV cascades are a representative case of irradiations by
neutrons or high-energy ions in terms of spatial correlations.
Besides the physical relevance of using 20-keV PKAs, it is
known that at this energy the damage is highly correlated,24

so it is an interesting case to test the validity of the SHM. In
the following, doses are expressed in dpa as calculated by the
NRT formula,25 using a displacement threshold energy equal
to 40 eV.26 All calculations are done at 300 K.

The MARLOWE code was used to generate Nc = 1000 cas-
cades, which were homogenized with the SHM implemented
in JERK during th = 0.1 s with values of rd from 10 to 50 a,
where a is the lattice parameter of iron. For each radius
and each cascade, the number of KMC runs was Nr = 100.
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The simulation box dimensions were 200a × 200a × 200a

and periodic boundary conditions were used. To provide a
reference calculation, full EKMC calculations were performed
up to 0.1 dpa with JERK. On average, eight cascades per second
were introduced randomly in the box, which corresponds to a
damage rate of 10−4 dpa s−1. Experimentally, such a high flux
is typically obtained with ion irradiations.27 The combination
of the high flux and the high energy of (sub)cascades is aimed
to test the SHM under severe irradiation conditions, where its
validity could be questioned. Concerning CD simulations with
CRESCENDO, no spatial dependence was considered.

For both KMC and CD simulations, a set of physical
parameters describing the migration and stability of clusters
is needed. As the purpose of the present work is not to
develop a new physical model of α-iron under irradiation, we
simply used the kinetic and thermodynamic parametrizations
described in Ref. 18, which were shown to successfully
reproduce the resistivity recovery experiments after electron
irradiation at low temperatures. In this model, interstitial
clusters containing up to three interstitials and vacancy clusters
containing up to four vacancies are mobile.

In Fig. 2 we show the interstitial and vacancy cluster
distributions at 10−3 dpa obtained by full EKMC simulations
and two CD simulations using different source terms. Statistics
was improved in full EKMC calculations by running 100
simulations and averaging out cluster concentrations over
the runs. In the first CD calculation, the mean number
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FIG. 2. (Color online) Interstitial and vacancy cluster distri-
butions in iron irradiated up to 10−3 dpa at 10−4 dpa s−1 with
20-keV cascades. Reference calculation is the EKMC simulation. CD
calculations were performed without annealing and with the SHM.

of interstitials and vacancies created in cascades given by
MARLOWE was directly used as a source term for CRESCENDO.
In the second calculation, the source term was determined by
the SHM applied to the MARLOWE cascade database. When
no sphere homogenization is performed, cluster distributions
completely differ from the reference calculation (EKMC,
blue squares), which highlights the importance of spatial
correlations on the nucleation and growth of clusters in these
conditions. Using the source term given by the SHM leads to
results in very good agreement with full EKMC calculations.

To highlight the improvement of the present homoge-
nization procedure over the usual constant-time annealing
approaches, annealing simulations of cascades provided by
MARLOWE were also performed with standard EKMC, up to
various physical times, from ta = 10−6 s to ta = 10−1 s, to
determine source terms for CD. Cluster distributions obtained
by full EKMC simulations and CD simulations with the
different source terms are shown in Fig. 3 at 10−3 dpa.
The first thing to note is that CD results based on the
SHM give the best agreement with full EKMC simulations,
compared to CD simulations with a source term obtained by
a constant-time annealing method. In addition, when standard
annealing is performed in the EKMC, cluster distributions in
CD depend greatly on the annealing time. As ta increases,
small mobile interstitial clusters can react with each other
during the KMC annealing and the concentration of small
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FIG. 3. (Color online) Interstitial and vacancy cluster distribu-
tions in iron irradiated up to 10−3 dpa at 10−4 dpa s−1 with 20-keV
cascades. Reference calculation is the EKMC simulation. The source
term for CD calculations has been obtained either with the SHM or
by performing an annealing without spheres, up to various physical
times (shown in the legend).
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immobile interstitial clusters (In>3) increases. Therefore the
source term for these immobile interstitial clusters increases
with ta, while the source term for small mobile interstitial
clusters decreases. These two variations result in the formation
of a large number of small interstitial clusters in the subsequent
CD simulations. As shown in Fig. 3, in order to fit the
interstitial distribution obtained in the full EKMC simulations,
annealing up to ta = 10−5 s seems an appropriate value.
However, in this case the vacancy distribution is not correctly
reproduced, especially for the mono- and divacancies, which
exhibit higher concentrations when annealing is performed.
It can be checked that this discrepancy cannot be solved
by increasing the annealing time, so the problem does not
come from a too low vacancy clustering rate during annealing.
Instead it comes from the fact that during the homogenization
process, mobile interstitial clusters quickly reach their spheres
and are therefore introduced as such in the source term.
In CD they can recombine with vacancies, which lowers
V and V2 concentrations. When spheres are not used, the
clustering process of interstitials is not impeded as ta increases,
so the concentration of mobile interstitial clusters decreases
during the annealing. The resulting low production term of
mobile interstitial clusters in CD is responsible for the high
concentration of V and V2. This point shows that the annealing
time is not the appropriate parameter for homogenizing
cascades. Conversely, the SHM correctly accounts for the
clustering and homogenization of the different defect types,
which occur on different time scales depending on their
diffusion coefficients.

The relevance of a dynamic source term should also be
discussed, since it introduces more complexity in the proposed
method. Indeed it must be updated at each time step of
CD calculations using the cluster density and preliminary
homogenizations with different values of rd. To investigate
this point, a large variation in cluster density is needed and
simulations were therefore performed up to 0.1 dpa. In CD
calculations, the increase in the cluster density results in a
decrease in rc from 50a to 12a [Eq. (2)], so rd should span this
range. In this case, due to long simulation times, full EKMC
simulations were averaged out over only 30 runs. Results
obtained without the dynamic source term are also shown in
Fig. 4, using rd = 50a throughout the CD simulation. It can be
seen that when the source term varies as a function of cluster
density, the overall agreement with full EKMC calculations
is significantly improved. The improvement is particularly
noticeable for interstitial clusters, which can be explained
as follows. When rd = 50a is used in the SHM, clusters are
allowed to migrate over distances which are larger than rc in
the CD simulation at high doses. During the homogenization
procedure, some reactions occur between clusters separated by
more than 2rc and less than 2rd. The rate of such intracascade
reactions is generally too high with respect to what would occur
in a full EKMC at a high dose, because intercascade clustering
is not considered during the homogenization procedure. This
artificial enhancement of the intracascade clustering and thus
of the production rate of immobile interstitial clusters is
responsible for the higher density of small immobile interstitial
clusters in CD, at the expense of large interstitial clusters.
Some discrepancies remain for mono- and divacancies and
for the distribution tails. Two possible sources of error can
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FIG. 4. (Color online) Interstitial and vacancy cluster distribu-
tions in iron irradiated up to 10−1 dpa at 10−4 dpa s−1 with 20-keV
cascades. The reference calculation is the EKMC simulation. The
SHM was used to determine the CD source term. In the first CD
calculation, the source term is constant throughout the simulation
and corresponds to a homogenization with rd = 50a. In the second
calculation, the source term varies with time as a function of the
cluster density and corresponds to rd values between 12a and 50a.

be identified to explain these deviations from the reference
EKMC calculations. The first one is independent of the source
term. When the cluster density becomes high, the assumptions
of CD which are valid in the dilute limit28 eventually break
down.12 The clustering rate in EKMC is then higher than
in CD and the EKMC distribution often exhibits higher
concentrations than CD ones for large clusters, as observed
in the distribution in Fig. 4. Expressions aimed to improve the
validity of CD when the concentration of clusters is high should
be used in this case.29–31 The second source of error is related
to the cascade overlap: at such a dose, the probability that a
cascade overlaps defect clusters created in previous cascades
may not be negligible.32

The use of a dynamic source term requires the homoge-
nization of a large number of cascades for different values
of rd. It is thus legitimate to wonder about the computational
burden of such calculations and to check that they do not
make the method impractical. The computation time needed
for the annealing and for the homogenization of 20-keV
cascades is plotted in Fig. 5 as a function of KMC time. In
the case of the SHM, we consider two different sphere radii
corresponding to the lower and upper bounds considered in
this section, rd = 10a and rd = 50a. For small KMC times,
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FIG. 5. (Color online) Computation time to anneal or homogenize
105 cascades in iron created by a 20-keV PKA, as a function of the
KMC time. Homogenization is performed with two values of sphere
radii.

nearly no difference exists between the methods. The macro
time step in KMC is imposed by the fastest species, which
is the monointerstitial. At 300 K, the associated time step
is �t = 5.5 × 10−7 s. In the SHM, as time increases, the
fastest clusters touch their spheres and are removed from
the simulation box. Once only monovacancies and immobile
clusters remain in the simulation box, the macro time step
becomes equal to �t = 0.19 s, so the procedure quickly
terminates in at most one macro time step, considering a
homogenization time less than or equal to 0.1 s. This is the
reason why the computation time reaches a constant value
which depends on rd for the SHM. For the annealing method,
fast clusters can remain in the simulation box for a larger time,
which considerably slows down the computation.

IV. HELIUM IMPLANTATION IN α-IRON

Helium implantation is the first step in helium desorption
experiments,33,34 whose aim is to probe the stability of
small vacancy-helium clusters created during implantation or
the subsequent isothermal or isochronal annealings. In this
section we consider the implantation of helium in α-iron.
In some experiments performed in iron, primary damage
is distributed uniformly over the depth35 and attempts have
been made to simulate helium desorption.36 Others are more
difficult to simulate37,38 because of the highly inhomogeneous
implantation and damage profiles. The choice that comes to
mind first to simulate implantation in these conditions is KMC,
since surfaces can be easily considered and the implantation
profile builds up naturally as cascades are introduced in
the simulation box. However, helium is highly mobile in
α-iron, with a migration energy of around 0.06 eV.39 This
high mobility considerably slows down KMC simulations and
makes full KMC modeling of implantation and desorption
impossible in practice when helium is implanted at a large
fluence. CD does not suffer from this problem, as rate equations
are solved deterministically, and it is therefore well adapted

provided the effective source term is spatially dependent, in
order to capture the effect of the inhomogeneous implantation.

As in the previous section MARLOWE was used to generate
Nc = 10 000 cascades created by the implantation of 60-keV
helium atoms. At this energy, the ion projected range is 260 nm,
i.e., around 900 lattice parameters. Cascades were homoge-
nized during 0.1 s at room temperature in a KMC simulation
box whose dimensions were 1000a × 1000a × 5000a, and the
number of KMC runs was Nr = 10 for each cascade. Periodic
boundary conditions were used along the two first directions. In
the last direction, boundaries were considered as perfect sinks
for all clusters, which means that clusters were removed from
the simulation once they reached the surfaces of the sample.
The KMC simulation box was subdivided into 100 slices for
the SHM, to determine a spatially dependent source term for
CD. The same number of slices was used in CD simulations.

Helium flux was equal to 1013 He cm−2 s−1, which means on
average 8237 cascades were introduced in the simulation box
per second for full EKMC simulations. The same dimensions
and boundary conditions were used as for the SHM. Results
obtained by full EKMC simulations were averaged out over
100 runs. The simulations could only be performed up to 0.2 s
due to large computation times.
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FIG. 6. (Color online) Interstitial and vacancy cluster distribu-
tions after implantation of 60-keV helium during 0.2 s with a flux
equal to 1013 He cm−2 s−1. The distribution is shown close to the
surface, at depth z = 14 nm, only for clusters containing a single
helium atom (VnHe) or no helium (Vn and all interstitial clusters in
this case). The reference calculation is the EKMC simulation. CD
calculations were performed without annealing and with the SHM.
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The parametrization of the model is the same as in the
previous section for self-defect clusters. Concerning clusters
containing helium, only a single interstitial helium is consid-
ered mobile with a pre-exponential factor D0/a

2 = 1013 Hz
and a migration energy Em = 0.06 eV. The binding energies
of vacancies, SIAs, and helium atoms to vacancy-helium
clusters are given by a bubble model parametrized on MD
calculations,40 which is valid over a large range of helium-
to-vacancy ratios. This model breaks down for atomic-size
clusters and is thus completed by binding energies from density
functional theory calculations for clusters containing less than
five vacancies.39 Concerning interstitial loops with helium, we
use the linear dependence of the binding energy of a helium
atom on the number of interstitial atoms in the loop, obtained
by empirical potential calculations.41 Binding energies of SIAs
and helium atoms to helium clusters are taken from density
functional theory calculations.42

In order to check that the homogenization method is valid
in different physical regimes, the comparison between the full
EKMC and CD is performed at two depths, z = 14 nm and
z = 255 nm. In the first case, the production rate of self-defects
is far higher than the implantation rate of helium. In addition,
SIAs and helium atoms quickly migrate to the surface, where
they annihilate. We can thus expect the clustering of vacancies
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FIG. 7. (Color online) Interstitial and vacancy cluster distribu-
tions after implantation of 60-keV helium during 0.2 s with a flux
equal to 1013 He cm−2 s−1. The distribution is shown near the ion
projected range, at depth z = 255 nm, only for clusters containing
a single helium atom (VnHe, InHe) or no helium (Vn and In). The
reference calculation is the EKMC simulation. CD calculations were
performed without annealing and with the SHM.

to be the main physical phenomenon for the formation of
bubbles. In the second case, more deeply in the sample,
the helium-to-vacancy ratio is higher. Moreover, interstitials
mainly disappear through the recombination with vacancies, so
vacancy clusters should be filled with more helium than close
to the surface and the growth mechanism can be assisted by
the emission of SIAs, if the helium pressure is high enough.43

Cluster distributions at these two depths are shown in
Figs. 6 and 7 at 0.2 s. Although the physical time is small,
the distributions are clearly different, with more pressurized
vacancy-helium clusters near the helium implantation peak.
In the two cases, CD gives results in close agreement with
the full EKMC when the SHM is used. If the production
rate of vacancies, SIAs, and helium atoms as obtained by
MARLOWE at different depths is directly injected into the
spatially dependent CD calculations, cluster distributions are
not correctly reproduced. In particular, the vacancy cluster
density is systematically underestimated due to the artificial
homogenization of primary damage in CD, which reduces the
nucleation.

If annealing of cascades is performed instead of the SHM,
results are improved with respect to the no-annealing case
(Fig. 8). Cluster distributions are shown for an annealing time
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FIG. 8. (Color online) Interstitial and vacancy cluster distribu-
tions after implantation of 60-keV helium during 0.2 s with a flux
equal to 1013 He cm−2 s−1. The distribution is shown near the ion
projected range, at depth z = 255 nm, only for clusters containing
a single helium atom (VnHe, InHe) or no helium (Vn and In). The
reference calculation is the EKMC simulation. CD calculations were
performed with a source term given by the SHM or by a standard
annealing with ta = 10−4 s.
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equal to ta = 10−4 s, which gives the best fit for the interstitial
clusters without helium. However, in this case the agreement
for the interstitial clusters with helium and the vacancy clusters
is rather poor. To explain this discrepancy, it is interesting to
estimate the mean-square displacements of some of migrating
species during 10−4 s. At 300 K, it is 0.2a for monovacancies,
108a for SIAs, and (2.4 × 104)a for interstitial helium atoms.
Interstitial helium thus quickly leaves the cascade region and
disappears at the surface during the cascade annealing in
EKMC, so the effective source term for interstitial helium
is nearly 0. The contributions for clusters containing helium
are therefore underestimated by nearly one order of magnitude
with the standard annealing procedure. On the contrary, when
the SHM is used, interstitial helium quickly reaches its sphere
and is included in the effective source term corresponding to
the slice where it is implanted. The agreement is good for
both vacancy and interstitial cluster distributions, whatever
the helium content inside clusters. This emphasizes again the
simplicity and the reliability of the method with respect to
standard annealing when the number of cluster types with
different diffusion coefficients increases.

V. CONCLUSION

In this article we have shown that a specific procedure
is needed to transfer the primary damage provided by MD or
BCA calculations into mean-field CD calculations. Performing
no annealing or an annealing of primary damage during a
given time, regardless of the different cluster types, leads to

large differences between cluster distributions obtained with
CD and with reference KMC calculations.

A method has thus been proposed to account for spatial
correlations within displacement cascades in CD simulations.
It is based on an intermediate space homogenization step of the
primary damage, which produces an effective source term for
CD. This SHM can be performed with any OKMC or EKMC
code, provided a simple yet crucial modification is done to
the standard algorithm, to take account of the different times
needed by clusters to homogenize and thus to be treated in
a mean-field approach. The procedure is systematic, in the
sense that it does not depend on the properties of cascades
created by MD or BCA and does not include any fitting
procedure.

The method has been tested in iron for cascades created by
20-keV PKA and helium atoms implanted at 60 keV. In both
cases, the comparison with KMC simulations showed that the
method successfully reproduces cluster distributions, even at
doses as high as 0.1 dpa. This procedure must be applied for
each set of irradiation conditions (temperature, PKA energy,
etc.). Although it cannot be guaranteed always to give results
in exact agreement with KMC, its physical justification should
make it valid under a large set of conditions.
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